Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Validating Static Warnings via Testing Code Fragments (2106.04735v3)

Published 8 Jun 2021 in cs.SE

Abstract: Static analysis is an important approach for finding bugs and vulnerabilities in software. However, inspecting and confirming static warnings are challenging and time-consuming. In this paper, we present a novel solution that automatically generates test cases based on static warnings to validate true and false positives. We designed a syntactic patching algorithm that can generate syntactically valid, semantic preserving executable code fragments from static warnings. We developed a build and testing system to automatically test code fragments using fuzzers, KLEE and Valgrind. We evaluated our techniques using 12 real-world C projects and 1955 warnings from two commercial static analysis tools. We successfully built 68.5% code fragments and generated 1003 test cases. Through automatic testing, we identified 48 true positives and 27 false positives, and 205 likely false positives. We matched 4 CVE and real-world bugs using Helium, and they are only triggered by our tool but not other baseline tools. We found that testing code fragments is scalable and useful; it can trigger bugs that testing entire programs or testing procedures failed to trigger.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube