Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Noise Conditional Flow Model for Learning the Super-Resolution Space (2106.04428v1)

Published 6 Jun 2021 in cs.CV

Abstract: Fundamentally, super-resolution is ill-posed problem because a low-resolution image can be obtained from many high-resolution images. Recent studies for super-resolution cannot create diverse super-resolution images. Although SRFlow tried to account for ill-posed nature of the super-resolution by predicting multiple high-resolution images given a low-resolution image, there is room to improve the diversity and visual quality. In this paper, we propose Noise Conditional flow model for Super-Resolution, NCSR, which increases the visual quality and diversity of images through noise conditional layer. To learn more diverse data distribution, we add noise to training data. However, low-quality images are resulted from adding noise. We propose the noise conditional layer to overcome this phenomenon. The noise conditional layer makes our model generate more diverse images with higher visual quality than other works. Furthermore, we show that this layer can overcome data distribution mismatch, a problem that arises in normalizing flow models. With these benefits, NCSR outperforms baseline in diversity and visual quality and achieves better visual quality than traditional GAN-based models. We also get outperformed scores at NTIRE 2021 challenge.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.