Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation (2106.04269v2)

Published 8 Jun 2021 in cs.CV

Abstract: In this paper, we present a new bottom-up one-stage method for whole-body pose estimation, which we call "hierarchical point regression," or HPRNet for short. In standard body pose estimation, the locations of $\sim 17$ major joints on the human body are estimated. Differently, in whole-body pose estimation, the locations of fine-grained keypoints (68 on face, 21 on each hand and 3 on each foot) are estimated as well, which creates a scale variance problem that needs to be addressed. To handle the scale variance among different body parts, we build a hierarchical point representation of body parts and jointly regress them. The relative locations of fine-grained keypoints in each part (e.g. face) are regressed in reference to the center of that part, whose location itself is estimated relative to the person center. In addition, unlike the existing two-stage methods, our method predicts whole-body pose in a constant time independent of the number of people in an image. On the COCO WholeBody dataset, HPRNet significantly outperforms all previous bottom-up methods on the keypoint detection of all whole-body parts (i.e. body, foot, face and hand); it also achieves state-of-the-art results on face (75.4 AP) and hand (50.4 AP) keypoint detection. Code and models are available at \url{https://github.com/nerminsamet/HPRNet}.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube