Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Average (Edge-)Connectivity of Minimally $k$-(Edge-)Connected Graphs (2106.04083v2)

Published 8 Jun 2021 in math.CO and cs.DM

Abstract: Let $G$ be a graph of order $n$ and let $u,v$ be vertices of $G$. Let $\kappa_G(u,v)$ denote the maximum number of internally disjoint $u$-$v$ paths in $G$. Then the average connectivity $\overline{\kappa}(G)$ of $G$, is defined as $ \overline{\kappa}(G)=\sum_{{u,v}\subseteq V(G)} \kappa_G(u,v)/\tbinom{n}{2}. $ If $k \ge 1$ is an integer, then $G$ is minimally $k$-connected if $\kappa(G)=k$ and $\kappa(G-e) < k$ for every edge $e$ of $G$. We say that $G$ is an optimal minimally $k$-connected graph if $G$ has maximum average connectivity among all minimally $k$-connected graphs of order $n$. Based on a recent structure result for minimally 2-connected graphs we conjecture that, for every integer $k \ge3$, if $G$ is an optimal minimally $k$-connected graph of order $n\geq 2k+1$, then $G$ is bipartite, with the set of vertices of degree $k$ and the set of vertices of degree exceeding $k$ as its partite sets. We show that if this conjecture is true, then $\overline{\kappa}(G)< 9k/8$ for every minimally $k$-connected graph $G$. For every $k \ge 3$, we describe an infinite family of minimally $k$-connected graphs whose average connectivity is asymptotically $9k/8$. Analogous results are established for the average edge-connectivity of minimally $k$-edge-connected graphs.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube