Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Vanishing Curvature and the Power of Adaptive Methods in Randomly Initialized Deep Networks (2106.03763v1)

Published 7 Jun 2021 in cs.LG

Abstract: This paper revisits the so-called vanishing gradient phenomenon, which commonly occurs in deep randomly initialized neural networks. Leveraging an in-depth analysis of neural chains, we first show that vanishing gradients cannot be circumvented when the network width scales with less than O(depth), even when initialized with the popular Xavier and He initializations. Second, we extend the analysis to second-order derivatives and show that random i.i.d. initialization also gives rise to Hessian matrices with eigenspectra that vanish as networks grow in depth. Whenever this happens, optimizers are initialized in a very flat, saddle point-like plateau, which is particularly hard to escape with stochastic gradient descent (SGD) as its escaping time is inversely related to curvature. We believe that this observation is crucial for fully understanding (a) historical difficulties of training deep nets with vanilla SGD, (b) the success of adaptive gradient methods (which naturally adapt to curvature and thus quickly escape flat plateaus) and (c) the effectiveness of modern architectural components like residual connections and normalization layers.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.