Papers
Topics
Authors
Recent
2000 character limit reached

HERS Superpixels: Deep Affinity Learning for Hierarchical Entropy Rate Segmentation (2106.03755v2)

Published 7 Jun 2021 in cs.CV, stat.AP, and stat.ML

Abstract: Superpixels serve as a powerful preprocessing tool in numerous computer vision tasks. By using superpixel representation, the number of image primitives can be largely reduced by orders of magnitudes. With the rise of deep learning in recent years, a few works have attempted to feed deeply learned features / graphs into existing classical superpixel techniques. However, none of them are able to produce superpixels in near real-time, which is crucial to the applicability of superpixels in practice. In this work, we propose a two-stage graph-based framework for superpixel segmentation. In the first stage, we introduce an efficient Deep Affinity Learning (DAL) network that learns pairwise pixel affinities by aggregating multi-scale information. In the second stage, we propose a highly efficient superpixel method called Hierarchical Entropy Rate Segmentation (HERS). Using the learned affinities from the first stage, HERS builds a hierarchical tree structure that can produce any number of highly adaptive superpixels instantaneously. We demonstrate, through visual and numerical experiments, the effectiveness and efficiency of our method compared to various state-of-the-art superpixel methods.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.