Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Action Segmentation for Instructional Videos

Published 7 Jun 2021 in cs.CV | (2106.03738v1)

Abstract: In this paper we address the problem of automatically discovering atomic actions in unsupervised manner from instructional videos, which are rarely annotated with atomic actions. We present an unsupervised approach to learn atomic actions of structured human tasks from a variety of instructional videos based on a sequential stochastic autoregressive model for temporal segmentation of videos. This learns to represent and discover the sequential relationship between different atomic actions of the task, and which provides automatic and unsupervised self-labeling.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.