Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reveal of Vision Transformers Robustness against Adversarial Attacks (2106.03734v2)

Published 7 Jun 2021 in cs.CV

Abstract: The major part of the vanilla vision transformer (ViT) is the attention block that brings the power of mimicking the global context of the input image. For better performance, ViT needs large-scale training data. To overcome this data hunger limitation, many ViT-based networks, or hybrid-ViT, have been proposed to include local context during the training. The robustness of ViTs and its variants against adversarial attacks has not been widely investigated in the literature like CNNs. This work studies the robustness of ViT variants 1) against different Lp-based adversarial attacks in comparison with CNNs, 2) under adversarial examples (AEs) after applying preprocessing defense methods and 3) under the adaptive attacks using expectation over transformation (EOT) framework. To that end, we run a set of experiments on 1000 images from ImageNet-1k and then provide an analysis that reveals that vanilla ViT or hybrid-ViT are more robust than CNNs. For instance, we found that 1) Vanilla ViTs or hybrid-ViTs are more robust than CNNs under Lp-based attacks and under adaptive attacks. 2) Unlike hybrid-ViTs, Vanilla ViTs are not responding to preprocessing defenses that mainly reduce the high frequency components. Furthermore, feature maps, attention maps, and Grad-CAM visualization jointly with image quality measures, and perturbations' energy spectrum are provided for an insight understanding of attention-based models.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.