Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning by Transference: Training Graph Neural Networks on Growing Graphs (2106.03693v3)

Published 7 Jun 2021 in cs.LG and eess.SP

Abstract: Graph neural networks (GNNs) use graph convolutions to exploit network invariances and learn meaningful feature representations from network data. However, on large-scale graphs convolutions incur in high computational cost, leading to scalability limitations. Leveraging the graphon -- the limit object of a graph -- in this paper we consider the problem of learning a graphon neural network (WNN) -- the limit object of a GNN -- by training GNNs on graphs sampled from the graphon. Under smoothness conditions, we show that: (i) the expected distance between the learning steps on the GNN and on the WNN decreases asymptotically with the size of the graph, and (ii) when training on a sequence of growing graphs, gradient descent follows the learning direction of the WNN. Inspired by these results, we propose a novel algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training. This algorithm is further benchmarked on a decentralized control problem, where it retains comparable performance to its large-scale counterpart at a reduced computational cost.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.