Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning Combinatorial Node Labeling Algorithms (2106.03594v3)

Published 7 Jun 2021 in cs.LG

Abstract: We present a novel neural architecture to solve graph optimization problems where the solution consists of arbitrary node labels, allowing us to solve hard problems like graph coloring. We train our model using reinforcement learning, specifically policy gradients, which gives us both a greedy and a probabilistic policy. Our architecture builds on a graph attention network and uses several inductive biases to improve solution quality. Our learned deterministic heuristics for graph coloring give better solutions than classical degree-based greedy heuristics and only take seconds to apply to graphs with tens of thousands of vertices. Moreover, our probabilistic policies outperform all greedy state-of-the-art coloring baselines and a machine learning baseline. Finally, we show that our approach also generalizes to other problems by evaluating it on minimum vertex cover and outperforming two greedy heuristics.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.