Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asynchronous speedup in decentralized optimization (2106.03585v2)

Published 7 Jun 2021 in math.OC, cs.MA, math.PR, and stat.ML

Abstract: In decentralized optimization, nodes of a communication network each possess a local objective function, and communicate using gossip-based methods in order to minimize the average of these per-node functions. While synchronous algorithms are heavily impacted by a few slow nodes or edges in the graph (the \emph{straggler problem}), their asynchronous counterparts are notoriously harder to parametrize. Indeed, their convergence properties for networks with heterogeneous communication and computation delays have defied analysis so far. In this paper, we use a \emph{ continuized} framework to analyze asynchronous algorithms in networks with delays. Our approach yields a precise characterization of convergence time and of its dependency on heterogeneous delays in the network. Our continuized framework benefits from the best of both continuous and discrete worlds: the algorithms it applies to are based on event-driven updates. They are thus essentially discrete and hence readily implementable. Yet their analysis is essentially in continuous time, relying in part on the theory of delayed ODEs. Our algorithms moreover achieve an \emph{asynchronous speedup}: their rate of convergence is controlled by the eigengap of the network graph weighted by local delays, instead of the network-wide worst-case delay as in previous analyses. Our methods thus enjoy improved robustness to stragglers.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube