Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Systematic Online Tuning of Multirotor UAVs for Accurate Trajectory Tracking Under Wind Disturbances and In-Flight Dynamics Changes (2106.03459v2)

Published 7 Jun 2021 in cs.RO, cs.SY, and eess.SY

Abstract: The demand for accurate and fast trajectory tracking for multirotor Unmanned Aerial Vehicles (UAVs) have grown recently due to advances in UAV avionics technology and application domains. In many applications, the multirotor UAV is required to accurately perform aggressive maneuvers in challenging scenarios like the presence of external wind disturbances or in-flight payload changes. In this paper, we propose a systematic controller tuning approach based on identification results obtained by a recently developed Deep Neural Networks with the Modified Relay Feedback Test (DNN-MRFT) algorithm. We formulate a linear equivalent representation suitable for DNN-MRFT using feedback linearization. This representation enables the analytical investigation of different controller structures and tuning settings, and captures the non-linearity trends of the system. With this approach, the trade-off between performance and robustness in design was made possible which is convenient for the design of controllers of UAVs operating in uncertain environments. We demonstrate that our approach is adaptive and robust through a set of experiments, where accurate trajectory tracking is maintained despite significant changes to the UAV aerodynamic characteristics and the application of wind disturbance. Due to the model-based system design, it was possible to obtain low discrepancy between simulation and experimental results which is beneficial for potential use of the proposed approach for real-time model-based planning and fault detection tasks. We obtained RMSE of $3.59 \; cm$ when tracking aggressive trajectories in the presence of strong wind, which is on par with state-of-the-art.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.