Papers
Topics
Authors
Recent
2000 character limit reached

Scientific Dataset Discovery via Topic-level Recommendation (2106.03399v1)

Published 7 Jun 2021 in cs.IR

Abstract: Data intensive research requires the support of appropriate datasets. However, it is often time-consuming to discover usable datasets matching a specific research topic. We formulate the dataset discovery problem on an attributed heterogeneous graph, which is composed of paper-paper citation, paper-dataset citation, and also paper content. We propose to characterize both paper and dataset nodes by their commonly shared latent topics, rather than learning user and item representations via canonical graph embedding models, because the usage of datasets and the themes of research projects can be understood on the common base of research topics. The relevant datasets to a given research project can then be inferred in the shared topic space. The experimental results show that our model can generate reasonable profiles for datasets, and recommend proper datasets for a query, which represents a research project linked with several papers.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.