Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LAWDR: Language-Agnostic Weighted Document Representations from Pre-trained Models (2106.03379v1)

Published 7 Jun 2021 in cs.CL and cs.AI

Abstract: Cross-lingual document representations enable language understanding in multilingual contexts and allow transfer learning from high-resource to low-resource languages at the document level. Recently large pre-trained LLMs such as BERT, XLM and XLM-RoBERTa have achieved great success when fine-tuned on sentence-level downstream tasks. It is tempting to apply these cross-lingual models to document representation learning. However, there are two challenges: (1) these models impose high costs on long document processing and thus many of them have strict length limit; (2) model fine-tuning requires extra data and computational resources, which is not practical in resource-limited settings. In this work, we address these challenges by proposing unsupervised Language-Agnostic Weighted Document Representations (LAWDR). We study the geometry of pre-trained sentence embeddings and leverage it to derive document representations without fine-tuning. Evaluated on cross-lingual document alignment, LAWDR demonstrates comparable performance to state-of-the-art models on benchmark datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.