Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
60 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instrument Space Selection for Kernel Maximum Moment Restriction (2106.03340v1)

Published 7 Jun 2021 in cs.LG

Abstract: Kernel maximum moment restriction (KMMR) recently emerges as a popular framework for instrumental variable (IV) based conditional moment restriction (CMR) models with important applications in conditional moment (CM) testing and parameter estimation for IV regression and proximal causal learning. The effectiveness of this framework, however, depends critically on the choice of a reproducing kernel Hilbert space (RKHS) chosen as a space of instruments. In this work, we presents a systematic way to select the instrument space for parameter estimation based on a principle of the least identifiable instrument space (LIIS) that identifies model parameters with the least space complexity. Our selection criterion combines two distinct objectives to determine such an optimal space: (i) a test criterion to check identifiability; (ii) an information criterion based on the effective dimension of RKHSs as a complexity measure. We analyze the consistency of our method in determining the LIIS, and demonstrate its effectiveness for parameter estimation via simulations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.