Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning (2106.03328v2)

Published 7 Jun 2021 in cs.LG, cs.CR, cs.DC, cs.IT, and math.IT

Abstract: Secure aggregation is a critical component in federated learning (FL), which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privacy of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of FL. In fact, we show that the conventional random user selection strategies in FL lead to leaking users' individual models within number of rounds that is linear in the number of users. To address this challenge, we introduce a secure aggregation framework, Multi-RoundSecAgg, with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of FL over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. Our experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings demonstrate the performance improvement over the baselines, both in terms of privacy protection and test accuracy.

Citations (71)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.