Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

A call for better unit testing for invariant risk minimisation (2106.03234v1)

Published 6 Jun 2021 in cs.LG, cs.AI, and stat.ML

Abstract: In this paper we present a controlled study on the linearized IRM framework (IRMv1) introduced in Arjovsky et al. (2020). We show that IRMv1 (and its variants) framework can be potentially unstable under small changes to the optimal regressor. This can, notably, lead to worse generalisation to new environments, even compared with ERM which converges simply to the global minimum for all training environments mixed up all together. We also highlight the isseus of scaling in the the IRMv1 setup. These observations highlight the importance of rigorous evaluation and importance of unit-testing for measuring progress towards IRM.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.