Papers
Topics
Authors
Recent
2000 character limit reached

Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues (2106.03065v2)

Published 6 Jun 2021 in cs.CL

Abstract: This paper propose to combine pretrained LLMs with the modular dialogue paradigm for open-domain dialogue modeling. Our method, semantic-enhanced finetuning, instantiates conversation understanding, planning, and response generation as a LLM finetuning task. At inference, we disentangle semantic and token variations by specifying sampling methods and constraints for each module separately. For training and evaluation, we present X-Weibo, a Chinese multi-turn open-domain dialogue dataset with automatic annotation for emotions, DAs, and topical words. Experiments show that semantic-enhanced finetuning outperforms strong baselines on non-semantic and semantic metrics, improves the human-evaluated relevance, coherence, and informativeness, and exhibits considerable controllability over semantic variables.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.