Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient Continuous Control with Double Actors and Regularized Critics (2106.03050v1)

Published 6 Jun 2021 in cs.LG

Abstract: How to obtain good value estimation is one of the key problems in Reinforcement Learning (RL). Current value estimation methods, such as DDPG and TD3, suffer from unnecessary over- or underestimation bias. In this paper, we explore the potential of double actors, which has been neglected for a long time, for better value function estimation in continuous setting. First, we uncover and demonstrate the bias alleviation property of double actors by building double actors upon single critic and double critics to handle overestimation bias in DDPG and underestimation bias in TD3 respectively. Next, we interestingly find that double actors help improve the exploration ability of the agent. Finally, to mitigate the uncertainty of value estimate from double critics, we further propose to regularize the critic networks under double actors architecture, which gives rise to Double Actors Regularized Critics (DARC) algorithm. Extensive experimental results on challenging continuous control tasks show that DARC significantly outperforms state-of-the-art methods with higher sample efficiency.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.