Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-facet Contextual Bandits: A Neural Network Perspective (2106.03039v3)

Published 6 Jun 2021 in cs.LG

Abstract: Contextual multi-armed bandit has shown to be an effective tool in recommender systems. In this paper, we study a novel problem of multi-facet bandits involving a group of bandits, each characterizing the users' needs from one unique aspect. In each round, for the given user, we need to select one arm from each bandit, such that the combination of all arms maximizes the final reward. This problem can find immediate applications in E-commerce, healthcare, etc. To address this problem, we propose a novel algorithm, named MuFasa, which utilizes an assembled neural network to jointly learn the underlying reward functions of multiple bandits. It estimates an Upper Confidence Bound (UCB) linked with the expected reward to balance between exploitation and exploration. Under mild assumptions, we provide the regret analysis of MuFasa. It can achieve the near-optimal $\widetilde{ \mathcal{O}}((K+1)\sqrt{T})$ regret bound where $K$ is the number of bandits and $T$ is the number of played rounds. Furthermore, we conduct extensive experiments to show that MuFasa outperforms strong baselines on real-world data sets.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.