Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

On Irreversible Metropolis Sampling Related to Langevin Dynamics (2106.03012v1)

Published 6 Jun 2021 in stat.CO, cs.NA, math.NA, and physics.comp-ph

Abstract: There has been considerable interest in designing Markov chain Monte Carlo algorithms by exploiting numerical methods for Langevin dynamics, which includes Hamiltonian dynamics as a deterministic case. A prominent approach is Hamiltonian Monte Carlo (HMC), where a leapfrog discretization of Hamiltonian dynamics is employed. We investigate a recently proposed class of irreversible sampling algorithms, called Hamiltonian assisted Metropolis sampling (HAMS), which uses an augmented target density similarly as in HMC, but involves a flexible proposal scheme and a carefully formulated acceptance-rejection scheme to achieve generalized reversibility. We show that as the step size tends to 0, the HAMS proposal satisfies a class of stochastic differential equations including Langevin dynamics as a special case. We provide theoretical results for HAMS under the univariate Gaussian setting, including the stationary variance, the expected acceptance rate, and the spectral radius. From these results, we derive default choices of tuning parameters for HAMS, such that only the step size needs to be tuned in applications. Various relatively recent algorithms for Langevin dynamics are also shown to fall in the class of HAMS proposals up to negligible differences. Our numerical experiments on sampling high-dimensional latent variables confirm that the HAMS algorithms consistently achieve superior performance, compared with several Metropolis-adjusted algorithms based on popular integrators of Langevin dynamics.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)