Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

BiToD: A Bilingual Multi-Domain Dataset For Task-Oriented Dialogue Modeling (2106.02787v1)

Published 5 Jun 2021 in cs.CL

Abstract: Task-oriented dialogue (ToD) benchmarks provide an important avenue to measure progress and develop better conversational agents. However, existing datasets for end-to-end ToD modeling are limited to a single language, hindering the development of robust end-to-end ToD systems for multilingual countries and regions. Here we introduce BiToD, the first bilingual multi-domain dataset for end-to-end task-oriented dialogue modeling. BiToD contains over 7k multi-domain dialogues (144k utterances) with a large and realistic bilingual knowledge base. It serves as an effective benchmark for evaluating bilingual ToD systems and cross-lingual transfer learning approaches. We provide state-of-the-art baselines under three evaluation settings (monolingual, bilingual, and cross-lingual). The analysis of our baselines in different settings highlights 1) the effectiveness of training a bilingual ToD system compared to two independent monolingual ToD systems, and 2) the potential of leveraging a bilingual knowledge base and cross-lingual transfer learning to improve the system performance under low resource condition.

Citations (59)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com