Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exposing the Implicit Energy Networks behind Masked Language Models via Metropolis--Hastings (2106.02736v2)

Published 4 Jun 2021 in cs.LG and cs.CL

Abstract: While recent work has shown that scores from models trained by the ubiquitous masked language modeling (MLM) objective effectively discriminate probable from improbable sequences, it is still an open question if these MLMs specify a principled probability distribution over the space of possible sequences. In this paper, we interpret MLMs as energy-based sequence models and propose two energy parametrizations derivable from the trained MLMs. In order to draw samples correctly from these models, we develop a tractable sampling scheme based on the Metropolis--Hastings Monte Carlo algorithm. In our approach, samples are proposed from the same masked conditionals used for training the masked LLMs, and they are accepted or rejected based on their energy values according to the target distribution. We validate the effectiveness of the proposed parametrizations by exploring the quality of samples drawn from these energy-based models for both open-ended unconditional generation and a conditional generation task of machine translation. We theoretically and empirically justify our sampling algorithm by showing that the masked conditionals on their own do not yield a Markov chain whose stationary distribution is that of our target distribution, and our approach generates higher quality samples than other recently proposed undirected generation approaches (Wang et al., 2019, Ghazvininejad et al., 2019).

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 808 likes.

Upgrade to Pro to view all of the tweets about this paper: