Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

VEER: Enhancing the Interpretability of Model-based Optimizations (2106.02716v3)

Published 4 Jun 2021 in cs.SE

Abstract: Many software systems can be tuned for multiple objectives (e.g., faster runtime, less required memory, less network traffic or energy consumption, etc.). Optimizers built for different objectives suffer from "model disagreement"; i.e., they have different (or even opposite) insights and tactics on how to optimize a system. Model disagreement is rampant (at least for configuration problems). Yet prior to this paper, it has barely been explored. This paper shows that model disagreement can be mitigated via VEER, a one-dimensional approximation to the N-objective space. Since it is exploring a simpler goal space, VEER runs very fast (for eleven configuration problems). Even for our largest problem (with tens of thousands of possible configurations), VEER finds as good or better optimizations with zero model disagreements, three orders of magnitude faster (since its one-dimensional output no longer needs the sorting procedure). Based on the above, we recommend VEER as a very fast method to solve complex configuration problems, while at the same time avoiding model disagreement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.