Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Approximating Nash Social Welfare under Binary XOS and Binary Subadditive Valuations (2106.02656v2)

Published 4 Jun 2021 in cs.GT

Abstract: We study the problem of allocating indivisible goods among agents in a fair and economically efficient manner. In this context, the Nash social welfare-defined as the geometric mean of agents' valuations for their assigned bundles-stands as a fundamental measure that quantifies the extent of fairness of an allocation. Focusing on instances in which the agents' valuations have binary marginals, we develop essentially tight results for (approximately) maximizing Nash social welfare under two of the most general classes of complement-free valuations, i.e., under binary XOS and binary subadditive valuations. For binary XOS valuations, we develop a polynomial-time algorithm that finds a constant-factor (specifically $288$) approximation for the optimal Nash social welfare, in the standard value-oracle model. The allocations computed by our algorithm also achieve constant-factor approximation for social welfare and the groupwise maximin share guarantee. These results imply that-in the case of binary XOS valuations-there necessarily exists an allocation that simultaneously satisfies multiple (approximate) fairness and efficiency criteria. We complement the algorithmic result by proving that Nash social welfare maximization is APX-hard under binary XOS valuations. Furthermore, this work establishes an interesting separation between the binary XOS and binary subadditive settings. In particular, we prove that an exponential number of value queries are necessarily required to obtain even a sub-linear approximation for Nash social welfare under binary subadditive valuations.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube