Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fundamental tradeoffs between memorization and robustness in random features and neural tangent regimes (2106.02630v1)

Published 4 Jun 2021 in stat.ML and cs.LG

Abstract: This work studies the (non)robustness of two-layer neural networks in various high-dimensional linearized regimes. We establish fundamental trade-offs between memorization and robustness, as measured by the Sobolev-seminorm of the model w.r.t the data distribution, i.e the square root of the average squared $L_2$-norm of the gradients of the model w.r.t the its input. More precisely, if $n$ is the number of training examples, $d$ is the input dimension, and $k$ is the number of hidden neurons in a two-layer neural network, we prove for a large class of activation functions that, if the model memorizes even a fraction of the training, then its Sobolev-seminorm is lower-bounded by (i) $\sqrt{n}$ in case of infinite-width random features (RF) or neural tangent kernel (NTK) with $d \gtrsim n$; (ii) $\sqrt{n}$ in case of finite-width RF with proportionate scaling of $d$ and $k$; and (iii) $\sqrt{n/k}$ in case of finite-width NTK with proportionate scaling of $d$ and $k$. Moreover, all of these lower-bounds are tight: they are attained by the min-norm / least-squares interpolator (when $n$, $d$, and $k$ are in the appropriate interpolating regime). All our results hold as soon as data is log-concave isotropic, and there is label-noise, i.e the target variable is not a deterministic function of the data / features. We empirically validate our theoretical results with experiments. Accidentally, these experiments also reveal for the first time, (iv) a multiple-descent phenomenon in the robustness of the min-norm interpolator.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)