Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Bottleneck Profiles and Discrete Prokhorov Metrics for Persistence Diagrams (2106.02538v3)

Published 4 Jun 2021 in cs.CG and math.AT

Abstract: In topological data analysis (TDA), persistence diagrams have been a succesful tool. To compare them, Wasserstein and Bottleneck distances are commonly used. We address the shortcomings of these metrics and show a way to investigate them in a systematic way by introducing bottleneck profiles. This leads to a notion of discrete Prokhorov metrics for persistence diagrams as a generalization of the Bottleneck distance. They satisfy a stability result and bounds with respect to Wasserstein metrics. We provide algorithms to compute the newly introduced quantities and end with an discussion about experiments.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube