Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Intelligent Resource Reservation for Crowdsourced Live Video Streaming Applications in Geo-Distributed Cloud Environment (2106.02420v1)

Published 4 Jun 2021 in cs.NI, cs.DC, cs.LG, and cs.MM

Abstract: Crowdsourced live video streaming (livecast) services such as Facebook Live, YouNow, Douyu and Twitch are gaining more momentum recently. Allocating the limited resources in a cost-effective manner while maximizing the Quality of Service (QoS) through real-time delivery and the provision of the appropriate representations for all viewers is a challenging problem. In our paper, we introduce a machine-learning based predictive resource allocation framework for geo-distributed cloud sites, considering the delay and quality constraints to guarantee the maximum QoS for viewers and the minimum cost for content providers. First, we present an offline optimization that decides the required transcoding resources in distributed regions near the viewers with a trade-off between the QoS and the overall cost. Second, we use machine learning to build forecasting models that proactively predict the approximate transcoding resources to be reserved at each cloud site ahead of time. Finally, we develop a Greedy Nearest and Cheapest algorithm (GNCA) to perform the resource allocation of real-time broadcasted videos on the rented resources. Extensive simulations have shown that GNCA outperforms the state-of-the art resource allocation approaches for crowdsourced live streaming by achieving more than 20% gain in terms of system cost while serving the viewers with relatively lower latency.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.