Multitask Online Mirror Descent (2106.02393v3)
Abstract: We introduce and analyze MT-OMD, a multitask generalization of Online Mirror Descent (OMD) which operates by sharing updates between tasks. We prove that the regret of MT-OMD is of order $\sqrt{1 + \sigma2(N-1)}\sqrt{T}$, where $\sigma2$ is the task variance according to the geometry induced by the regularizer, $N$ is the number of tasks, and $T$ is the time horizon. Whenever tasks are similar, that is $\sigma2 \le 1$, our method improves upon the $\sqrt{NT}$ bound obtained by running independent OMDs on each task. We further provide a matching lower bound, and show that our multitask extensions of Online Gradient Descent and Exponentiated Gradient, two major instances of OMD, enjoy closed-form updates, making them easy to use in practice. Finally, we present experiments which support our theoretical findings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.