Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fre-GAN: Adversarial Frequency-consistent Audio Synthesis (2106.02297v2)

Published 4 Jun 2021 in eess.AS and cs.LG

Abstract: Although recent works on neural vocoder have improved the quality of synthesized audio, there still exists a gap between generated and ground-truth audio in frequency space. This difference leads to spectral artifacts such as hissing noise or reverberation, and thus degrades the sample quality. In this paper, we propose Fre-GAN which achieves frequency-consistent audio synthesis with highly improved generation quality. Specifically, we first present resolution-connected generator and resolution-wise discriminators, which help learn various scales of spectral distributions over multiple frequency bands. Additionally, to reproduce high-frequency components accurately, we leverage discrete wavelet transform in the discriminators. From our experiments, Fre-GAN achieves high-fidelity waveform generation with a gap of only 0.03 MOS compared to ground-truth audio while outperforming standard models in quality.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.