Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Matrix completion with data-dependent missingness probabilities (2106.02290v3)

Published 4 Jun 2021 in math.ST, cs.IT, math.IT, math.PR, stat.ME, and stat.TH

Abstract: The problem of completing a large matrix with lots of missing entries has received widespread attention in the last couple of decades. Two popular approaches to the matrix completion problem are based on singular value thresholding and nuclear norm minimization. Most of the past works on this subject assume that there is a single number $p$ such that each entry of the matrix is available independently with probability $p$ and missing otherwise. This assumption may not be realistic for many applications. In this work, we replace it with the assumption that the probability that an entry is available is an unknown function $f$ of the entry itself. For example, if the entry is the rating given to a movie by a viewer, then it seems plausible that high value entries have greater probability of being available than low value entries. We propose two new estimators, based on singular value thresholding and nuclear norm minimization, to recover the matrix under this assumption. The estimators involve no tuning parameters, and are shown to be consistent under a low rank assumption. We also provide a consistent estimator of the unknown function $f$.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.