Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Subdivision-Based Mesh Convolution Networks (2106.02285v2)

Published 4 Jun 2021 in cs.CV, cs.GR, and cs.LG

Abstract: Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision. However, their irregular structure makes it hard to harness the potential of CNNs directly on meshes. A subdivision surface provides a hierarchical multi-resolution structure, in which each face in a closed 2-manifold triangle mesh is exactly adjacent to three faces. Motivated by these two observations, this paper presents SubdivNet, an innovative and versatile CNN framework for 3D triangle meshes with Loop subdivision sequence connectivity. Making an analogy between mesh faces and pixels in a 2D image allows us to present a mesh convolution operator to aggregate local features from nearby faces. By exploiting face neighborhoods, this convolution can support standard 2D convolutional network concepts, e.g. variable kernel size, stride, and dilation. Based on the multi-resolution hierarchy, we make use of pooling layers which uniformly merge four faces into one and an upsampling method which splits one face into four. Thereby, many popular 2D CNN architectures can be easily adapted to process 3D meshes. Meshes with arbitrary connectivity can be remeshed to have Loop subdivision sequence connectivity via self-parameterization, making SubdivNet a general approach. Extensive evaluation and various applications demonstrate SubdivNet's effectiveness and efficiency.

Citations (107)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.