Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Regularization and Reparameterization Avoid Vanishing Gradients in Sigmoid-Type Networks (2106.02260v1)

Published 4 Jun 2021 in cs.LG, cs.AI, and stat.ML

Abstract: Deep learning requires several design choices, such as the nodes' activation functions and the widths, types, and arrangements of the layers. One consideration when making these choices is the vanishing-gradient problem, which is the phenomenon of algorithms getting stuck at suboptimal points due to small gradients. In this paper, we revisit the vanishing-gradient problem in the context of sigmoid-type activation. We use mathematical arguments to highlight two different sources of the phenomenon, namely large individual parameters and effects across layers, and to illustrate two simple remedies, namely regularization and rescaling. We then demonstrate the effectiveness of the two remedies in practice. In view of the vanishing-gradient problem being a main reason why tanh and other sigmoid-type activation has become much less popular than relu-type activation, our results bring sigmoid-type activation back to the table.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.