Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

A Scalable Second Order Method for Ill-Conditioned Matrix Completion from Few Samples (2106.02119v1)

Published 3 Jun 2021 in math.OC, cs.NA, math.NA, and stat.ML

Abstract: We propose an iterative algorithm for low-rank matrix completion that can be interpreted as an iteratively reweighted least squares (IRLS) algorithm, a saddle-escaping smoothing Newton method or a variable metric proximal gradient method applied to a non-convex rank surrogate. It combines the favorable data-efficiency of previous IRLS approaches with an improved scalability by several orders of magnitude. We establish the first local convergence guarantee from a minimal number of samples for that class of algorithms, showing that the method attains a local quadratic convergence rate. Furthermore, we show that the linear systems to be solved are well-conditioned even for very ill-conditioned ground truth matrices. We provide extensive experiments, indicating that unlike many state-of-the-art approaches, our method is able to complete very ill-conditioned matrices with a condition number of up to $10{10}$ from few samples, while being competitive in its scalability.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.