Shape-Preserving Dimensionality Reduction : An Algorithm and Measures of Topological Equivalence (2106.02096v3)
Abstract: We introduce a linear dimensionality reduction technique preserving topological features via persistent homology. The method is designed to find linear projection $L$ which preserves the persistent diagram of a point cloud $\mathbb{X}$ via simulated annealing. The projection $L$ induces a set of canonical simplicial maps from the Rips (or \v{C}ech) filtration of $\mathbb{X}$ to that of $L\mathbb{X}$. In addition to the distance between persistent diagrams, the projection induces a map between filtrations, called filtration homomorphism. Using the filtration homomorphism, one can measure the difference between shapes of two filtrations directly comparing simplicial complexes with respect to quasi-isomorphism $\mu_{\operatorname{quasi-iso}}$ or strong homotopy equivalence $\mu_{\operatorname{equiv}}$. These $\mu_{\operatorname{quasi-iso}}$ and $\mu_{\operatorname{equiv}}$ measures how much portion of corresponding simplicial complexes is quasi-isomorphic or homotopy equivalence respectively. We validate the effectiveness of our framework with simple examples.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.