Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Breaking the Cubic Barrier for (Unweighted) Tree Edit Distance (2106.02026v4)

Published 3 Jun 2021 in cs.DS

Abstract: The (unweighted) tree edit distance problem for $n$ node trees asks to compute a measure of dissimilarity between two rooted trees with node labels. The current best algorithm from more than a decade ago runs in $O(n ^ 3)$ time [Demaine, Mozes, Rossman, and Weimann, ICALP 2007]. The same paper also showed that $O(n ^ 3)$ is the best possible running time for any algorithm using the so-called decomposition strategy, which underlies almost all the known algorithms for this problem. These algorithms would also work for the weighted tree edit distance problem, which cannot be solved in truly sub-cubic time under the APSP conjecture [Bringmann, Gawrychowski, Mozes, and Weimann, SODA 2018]. In this paper, we break the cubic barrier by showing an $O(n ^ {2.9546})$ time algorithm for the unweighted tree edit distance problem. We consider an equivalent maximization problem and use a dynamic programming scheme involving matrices with many special properties. By using a decomposition scheme as well as several combinatorial techniques, we reduce tree edit distance to the max-plus product of bounded-difference matrices, which can be solved in truly sub-cubic time [Bringmann, Grandoni, Saha, and Vassilevska Williams, FOCS 2016].

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)