Exploiting co-execution with oneAPI: heterogeneity from a modern perspective (2106.01726v2)
Abstract: Programming efficiently heterogeneous systems is a major challenge, due to the complexity of their architectures. Intel oneAPI, a new and powerful standards-based unified programming model, built on top of SYCL, addresses these issues. In this paper, oneAPI is provided with co-execution strategies to run the same kernel between different devices, enabling the exploitation of static and dynamic policies. On top of that, static and dynamic load-balancing algorithms are integrated and analyzed. This work evaluates the performance and energy efficiency for a well-known set of regular and irregular HPC benchmarks, using an integrated GPU and CPU. Experimental results show that co-execution is worthwhile when using dynamic algorithms, improving efficiency even more when using unified shared memory.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.