Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fingerprinting Fine-tuned Language Models in the Wild (2106.01703v1)

Published 3 Jun 2021 in cs.CL, cs.AI, and cs.LG

Abstract: There are concerns that the ability of LMs to generate high quality synthetic text can be misused to launch spam, disinformation, or propaganda. Therefore, the research community is actively working on developing approaches to detect whether a given text is organic or synthetic. While this is a useful first step, it is important to be able to further fingerprint the author LM to attribute its origin. Prior work on fingerprinting LMs is limited to attributing synthetic text generated by a handful (usually < 10) of pre-trained LMs. However, LMs such as GPT2 are commonly fine-tuned in a myriad of ways (e.g., on a domain-specific text corpus) before being used to generate synthetic text. It is challenging to fingerprinting fine-tuned LMs because the universe of fine-tuned LMs is much larger in realistic scenarios. To address this challenge, we study the problem of large-scale fingerprinting of fine-tuned LMs in the wild. Using a real-world dataset of synthetic text generated by 108 different fine-tuned LMs, we conduct comprehensive experiments to demonstrate the limitations of existing fingerprinting approaches. Our results show that fine-tuning itself is the most effective in attributing the synthetic text generated by fine-tuned LMs.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.