Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Dialoging Resonance: How Users Perceive, Reciprocate and React to Chatbot's Self-Disclosure in Conversational Recommendations (2106.01666v2)

Published 3 Jun 2021 in cs.CL and cs.AI

Abstract: Using chatbots to deliver recommendations is increasingly popular. The design of recommendation chatbots has primarily been taking an information-centric approach by focusing on the recommended content per se. Limited attention is on how social connection and relational strategies, such as self-disclosure from a chatbot, may influence users' perception and acceptance of the recommendation. In this work, we designed, implemented, and evaluated a social chatbot capable of performing three different levels of self-disclosure: factual information (low), cognitive opinions (medium), and emotions (high). In the evaluation, we recruited 372 participants to converse with the chatbot on two topics: movies and COVID-19 experiences. In each topic, the chatbot performed small talks and made recommendations relevant to the topic. Participants were randomly assigned to four experimental conditions where the chatbot used factual, cognitive, emotional, and adaptive strategies to perform self-disclosures. By training a text classifier to identify users' level of self-disclosure in real-time, the adaptive chatbot can dynamically match its self-disclosure to the level of disclosure exhibited by the users. Our results show that users reciprocate with higher-level self-disclosure when a recommendation chatbot consistently displays emotions throughout the conversation. Chatbot's emotional disclosure also led to increased interactional enjoyment and more positive interpersonal perception towards the bot, fostering a stronger human-chatbot relationship and thus leading to increased recommendation effectiveness, including a higher tendency to accept the recommendation. We discuss the understandings obtained and implications to future design.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.