Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ERANNs: Efficient Residual Audio Neural Networks for Audio Pattern Recognition (2106.01621v7)

Published 3 Jun 2021 in cs.SD and eess.AS

Abstract: Audio pattern recognition (APR) is an important research topic and can be applied to several fields related to our lives. Therefore, accurate and efficient APR systems need to be developed as they are useful in real applications. In this paper, we propose a new convolutional neural network (CNN) architecture and a method for improving the inference speed of CNN-based systems for APR tasks. Moreover, using the proposed method, we can improve the performance of our systems, as confirmed in experiments conducted on four audio datasets. In addition, we investigate the impact of data augmentation techniques and transfer learning on the performance of our systems. Our best system achieves a mean average precision (mAP) of 0.450 on the AudioSet dataset. Although this value is less than that of the state-of-the-art system, the proposed system is 7.1x faster and 9.7x smaller. On the ESC-50, UrbanSound8K, and RAVDESS datasets, we obtain state-of-the-art results with accuracies of 0.961, 0.908, and 0.748, respectively. Our system for the ESC-50 dataset is 1.7x faster and 2.3x smaller than the previous best system. For the RAVDESS dataset, our system is 3.3x smaller than the previous best system. We name our systems "Efficient Residual Audio Neural Networks".

Citations (62)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.