Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

BERT-Defense: A Probabilistic Model Based on BERT to Combat Cognitively Inspired Orthographic Adversarial Attacks (2106.01452v1)

Published 2 Jun 2021 in cs.CL and cs.LG

Abstract: Adversarial attacks expose important blind spots of deep learning systems. While word- and sentence-level attack scenarios mostly deal with finding semantic paraphrases of the input that fool NLP models, character-level attacks typically insert typos into the input stream. It is commonly thought that these are easier to defend via spelling correction modules. In this work, we show that both a standard spellchecker and the approach of Pruthi et al. (2019), which trains to defend against insertions, deletions and swaps, perform poorly on the character-level benchmark recently proposed in Eger and Benz (2020) which includes more challenging attacks such as visual and phonetic perturbations and missing word segmentations. In contrast, we show that an untrained iterative approach which combines context-independent character-level information with context-dependent information from BERT's masked LLMing can perform on par with human crowd-workers from Amazon Mechanical Turk (AMT) supervised via 3-shot learning.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.