Emergent Mind

Parallelizing Thompson Sampling

(2106.01420)
Published Jun 2, 2021 in cs.LG , cs.AI , math.OC , and stat.ML

Abstract

How can we make use of information parallelism in online decision making problems while efficiently balancing the exploration-exploitation trade-off? In this paper, we introduce a batch Thompson Sampling framework for two canonical online decision making problems, namely, stochastic multi-arm bandit and linear contextual bandit with finitely many arms. Over a time horizon $T$, our \textit{batch} Thompson Sampling policy achieves the same (asymptotic) regret bound of a fully sequential one while carrying out only $O(\log T)$ batch queries. To achieve this exponential reduction, i.e., reducing the number of interactions from $T$ to $O(\log T)$, our batch policy dynamically determines the duration of each batch in order to balance the exploration-exploitation trade-off. We also demonstrate experimentally that dynamic batch allocation dramatically outperforms natural baselines such as static batch allocations.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.