Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Parallelizing Thompson Sampling (2106.01420v1)

Published 2 Jun 2021 in cs.LG, cs.AI, math.OC, and stat.ML

Abstract: How can we make use of information parallelism in online decision making problems while efficiently balancing the exploration-exploitation trade-off? In this paper, we introduce a batch Thompson Sampling framework for two canonical online decision making problems, namely, stochastic multi-arm bandit and linear contextual bandit with finitely many arms. Over a time horizon $T$, our \textit{batch} Thompson Sampling policy achieves the same (asymptotic) regret bound of a fully sequential one while carrying out only $O(\log T)$ batch queries. To achieve this exponential reduction, i.e., reducing the number of interactions from $T$ to $O(\log T)$, our batch policy dynamically determines the duration of each batch in order to balance the exploration-exploitation trade-off. We also demonstrate experimentally that dynamic batch allocation dramatically outperforms natural baselines such as static batch allocations.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.