Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The Semi-Supervised iNaturalist Challenge at the FGVC8 Workshop (2106.01364v1)

Published 2 Jun 2021 in cs.CV and cs.LG

Abstract: Semi-iNat is a challenging dataset for semi-supervised classification with a long-tailed distribution of classes, fine-grained categories, and domain shifts between labeled and unlabeled data. This dataset is behind the second iteration of the semi-supervised recognition challenge to be held at the FGVC8 workshop at CVPR 2021. Different from the previous one, this dataset (i) includes images of species from different kingdoms in the natural taxonomy, (ii) is at a larger scale -- with 810 in-class and 1629 out-of-class species for a total of 330k images, and (iii) does not provide in/out-of-class labels, but provides coarse taxonomic labels (kingdom and phylum) for the unlabeled images. This document describes baseline results and the details of the dataset which is available here: \url{https://github.com/cvl-umass/semi-inat-2021}.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com