Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improving low-resource ASR performance with untranscribed out-of-domain data (2106.01227v1)

Published 2 Jun 2021 in cs.CL, cs.SD, and eess.AS

Abstract: Semi-supervised training (SST) is a common approach to leverage untranscribed/unlabeled speech data to improve automatic speech recognition performance in low-resource languages. However, if the available unlabeled speech is mismatched to the target domain, SST is not as effective, and in many cases performs worse than the original system. In this paper, we address the issue of low-resource ASR when only untranscribed out-of-domain speech data is readily available in the target language. Specifically, we look to improve performance on conversational/telephony speech (target domain) using web resources, in particular YouTube data, which more closely resembles news/topical broadcast data. Leveraging SST, we show that while in some cases simply pooling the out-of-domain data with the training data lowers word error rate (WER), in all cases, we see improvements if we train first with the out-of-domain data and then fine-tune the resulting model with the original training data. Using 2000 hours of speed perturbed YouTube audio in each target language, with semi-supervised transcripts, we show improvements on multiple languages/data sets, of up to 16.3% relative improvement in WER over the baseline systems and up to 7.4% relative improvement in WER over a system that simply pools the out-of-domain data with the training data.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)