Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Uncovering Constraint-Based Behavior in Neural Models via Targeted Fine-Tuning (2106.01207v1)

Published 2 Jun 2021 in cs.CL

Abstract: A growing body of literature has focused on detailing the linguistic knowledge embedded in large, pretrained LLMs. Existing work has shown that non-linguistic biases in models can drive model behavior away from linguistic generalizations. We hypothesized that competing linguistic processes within a language, rather than just non-linguistic model biases, could obscure underlying linguistic knowledge. We tested this claim by exploring a single phenomenon in four languages: English, Chinese, Spanish, and Italian. While human behavior has been found to be similar across languages, we find cross-linguistic variation in model behavior. We show that competing processes in a language act as constraints on model behavior and demonstrate that targeted fine-tuning can re-weight the learned constraints, uncovering otherwise dormant linguistic knowledge in models. Our results suggest that models need to learn both the linguistic constraints in a language and their relative ranking, with mismatches in either producing non-human-like behavior.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.