Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 417 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Hybrid Ensemble optimized algorithm based on Genetic Programming for imbalanced data classification (2106.01176v1)

Published 2 Jun 2021 in cs.LG and cs.NE

Abstract: One of the most significant current discussions in the field of data mining is classifying imbalanced data. In recent years, several ways are proposed such as algorithm level (internal) approaches, data level (external) techniques, and cost-sensitive methods. Although extensive research has been carried out on imbalanced data classification, however, several unsolved challenges remain such as no attention to the importance of samples to balance, determine the appropriate number of classifiers, and no optimization of classifiers in the combination of classifiers. The purpose of this paper is to improve the efficiency of the ensemble method in the sampling of training data sets, especially in the minority class, and to determine better basic classifiers for combining classifiers than existing methods. We proposed a hybrid ensemble algorithm based on Genetic Programming (GP) for two classes of imbalanced data classification. In this study uses historical data from UCI Machine Learning Repository to assess minority classes in imbalanced datasets. The performance of our proposed algorithm is evaluated by Rapid-miner studio v.7.5. Experimental results show the performance of the proposed method on the specified data sets in the size of the training set shows 40% and 50% better accuracy than other dimensions of the minority class prediction.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.