Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep Learning based Full-reference and No-reference Quality Assessment Models for Compressed UGC Videos (2106.01111v1)

Published 2 Jun 2021 in eess.IV, cs.CV, and cs.MM

Abstract: In this paper, we propose a deep learning based video quality assessment (VQA) framework to evaluate the quality of the compressed user's generated content (UGC) videos. The proposed VQA framework consists of three modules, the feature extraction module, the quality regression module, and the quality pooling module. For the feature extraction module, we fuse the features from intermediate layers of the convolutional neural network (CNN) network into final quality-aware feature representation, which enables the model to make full use of visual information from low-level to high-level. Specifically, the structure and texture similarities of feature maps extracted from all intermediate layers are calculated as the feature representation for the full reference (FR) VQA model, and the global mean and standard deviation of the final feature maps fused by intermediate feature maps are calculated as the feature representation for the no reference (NR) VQA model. For the quality regression module, we use the fully connected (FC) layer to regress the quality-aware features into frame-level scores. Finally, a subjectively-inspired temporal pooling strategy is adopted to pool frame-level scores into the video-level score. The proposed model achieves the best performance among the state-of-the-art FR and NR VQA models on the Compressed UGC VQA database and also achieves pretty good performance on the in-the-wild UGC VQA databases.

Citations (45)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.