Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

T-BERT -- Model for Sentiment Analysis of Micro-blogs Integrating Topic Model and BERT (2106.01097v1)

Published 2 Jun 2021 in cs.CL and cs.AI

Abstract: Sentiment analysis (SA) has become an extensive research area in recent years impacting diverse fields including ecommerce, consumer business, and politics, driven by increasing adoption and usage of social media platforms. It is challenging to extract topics and sentiments from unsupervised short texts emerging in such contexts, as they may contain figurative words, strident data, and co-existence of many possible meanings for a single word or phrase, all contributing to obtaining incorrect topics. Most prior research is based on a specific theme/rhetoric/focused-content on a clean dataset. In the work reported here, the effectiveness of BERT(Bidirectional Encoder Representations from Transformers) in sentiment classification tasks from a raw live dataset taken from a popular microblogging platform is demonstrated. A novel T-BERT framework is proposed to show the enhanced performance obtainable by combining latent topics with contextual BERT embeddings. Numerical experiments were conducted on an ensemble with about 42000 datasets using NimbleBox.ai platform with a hardware configuration consisting of Nvidia Tesla K80(CUDA), 4 core CPU, 15GB RAM running on an isolated Google Cloud Platform instance. The empirical results show that the model improves in performance while adding topics to BERT and an accuracy rate of 90.81% on sentiment classification using BERT with the proposed approach.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.