Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TSI: Temporal Saliency Integration for Video Action Recognition (2106.01088v4)

Published 2 Jun 2021 in cs.CV

Abstract: Efficient spatiotemporal modeling is an important yet challenging problem for video action recognition. Existing state-of-the-art methods exploit neighboring feature differences to obtain motion clues for short-term temporal modeling with a simple convolution. However, only one local convolution is incapable of handling various kinds of actions because of the limited receptive field. Besides, action-irrelated noises brought by camera movement will also harm the quality of extracted motion features. In this paper, we propose a Temporal Saliency Integration (TSI) block, which mainly contains a Salient Motion Excitation (SME) module and a Cross-perception Temporal Integration (CTI) module. Specifically, SME aims to highlight the motion-sensitive area through spatial-level local-global motion modeling, where the saliency alignment and pyramidal motion modeling are conducted successively between adjacent frames to capture motion dynamics with fewer noises caused by misaligned background. CTI is designed to perform multi-perception temporal modeling through a group of separate 1D convolutions respectively. Meanwhile, temporal interactions across different perceptions are integrated with the attention mechanism. Through these two modules, long short-term temporal relationships can be encoded efficiently by introducing limited additional parameters. Extensive experiments are conducted on several popular benchmarks (i.e., Something-Something V1 & V2, Kinetics-400, UCF-101, and HMDB-51), which demonstrate the effectiveness of our proposed method.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.