Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Hi-Transformer: Hierarchical Interactive Transformer for Efficient and Effective Long Document Modeling (2106.01040v3)

Published 2 Jun 2021 in cs.CL

Abstract: Transformer is important for text modeling. However, it has difficulty in handling long documents due to the quadratic complexity with input text length. In order to handle this problem, we propose a hierarchical interactive Transformer (Hi-Transformer) for efficient and effective long document modeling. Hi-Transformer models documents in a hierarchical way, i.e., first learns sentence representations and then learns document representations. It can effectively reduce the complexity and meanwhile capture global document context in the modeling of each sentence. More specifically, we first use a sentence Transformer to learn the representations of each sentence. Then we use a document Transformer to model the global document context from these sentence representations. Next, we use another sentence Transformer to enhance sentence modeling using the global document context. Finally, we use hierarchical pooling method to obtain document embedding. Extensive experiments on three benchmark datasets validate the efficiency and effectiveness of Hi-Transformer in long document modeling.

Citations (58)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.